If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 7x + -3 = 0 Reorder the terms: -3 + 7x + 3x2 = 0 Solving -3 + 7x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1 + 2.333333333x + x2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + 2.333333333x + 1 + x2 = 0 + 1 Reorder the terms: -1 + 1 + 2.333333333x + x2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + 2.333333333x + x2 = 0 + 1 2.333333333x + x2 = 0 + 1 Combine like terms: 0 + 1 = 1 2.333333333x + x2 = 1 The x term is 2.333333333x. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333x + 1.361111112 + x2 = 1 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333x + x2 = 1 + 1.361111112 Combine like terms: 1 + 1.361111112 = 2.361111112 1.361111112 + 2.333333333x + x2 = 2.361111112 Factor a perfect square on the left side: (x + 1.166666667)(x + 1.166666667) = 2.361111112 Calculate the square root of the right side: 1.536590743 Break this problem into two subproblems by setting (x + 1.166666667) equal to 1.536590743 and -1.536590743.Subproblem 1
x + 1.166666667 = 1.536590743 Simplifying x + 1.166666667 = 1.536590743 Reorder the terms: 1.166666667 + x = 1.536590743 Solving 1.166666667 + x = 1.536590743 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 1.536590743 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 1.536590743 + -1.166666667 x = 1.536590743 + -1.166666667 Combine like terms: 1.536590743 + -1.166666667 = 0.369924076 x = 0.369924076 Simplifying x = 0.369924076Subproblem 2
x + 1.166666667 = -1.536590743 Simplifying x + 1.166666667 = -1.536590743 Reorder the terms: 1.166666667 + x = -1.536590743 Solving 1.166666667 + x = -1.536590743 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -1.536590743 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -1.536590743 + -1.166666667 x = -1.536590743 + -1.166666667 Combine like terms: -1.536590743 + -1.166666667 = -2.70325741 x = -2.70325741 Simplifying x = -2.70325741Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.369924076, -2.70325741}
| 15(v+2)-30=15v | | 8X-5+3X-8=2x+9x-16 | | x^2-77=0 | | (x-3)(x+4)=(x+1)(x+2) | | 4(x+4)=3(x-5)+x | | 3(2x-4)=5x-2 | | 80+(25x-2)+(25x+1)+(20x+1)=360 | | 3(r-7)=9 | | 10-17x+7x^2= | | 6=3-3 | | 0.4(x-3.8)=-2 | | y=23x+14 | | 4=0-3 | | y=-0.5-2 | | 15=-13b+2b | | (2x^3+3y)(4x^2+y)= | | .455=-.3(7n-31.2) | | 1=-2-3 | | x^2-5=(x+5)(2x-1) | | (x-3)(x+5)=x-7x-15 | | 2*(x+3)=(3x-5)*2 | | (7-5k)-(8-4k)+(5k+6)=8 | | 126=(2x+1)(x+1) | | 3.14*42= | | 5(5)-3(-2)+2(-2)= | | 126=(2x^2)(x+1) | | 5(5)-3(-2)+2(4)= | | 2x+3-4x=-8x+9 | | 2[2x+3]=6 | | (5x-3)+(7x-4)=8-(15-11x) | | 3x^2+14x-6=0 | | (6-y)+(1+4y)=46 |